Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated.

نویسندگان

  • S M Cocciolone
  • S Chopra
  • S A Flint-Garcia
  • M D McMullen
  • T Peterson
چکیده

The maize p1 gene encodes a Myb-homologous regulator of red pigment biosynthesis. To investigate the tissue-specific regulation of the p1 gene, maize plants were transformed with constructs combining promoter and cDNA sequences of two alleles which differ in pigmentation patterns: P1-wr (white pericarp/red cob) and P1-rr (red pericarp/red cob). Surprisingly, all promoter/cDNA combinations produced transgenic plants with red pericarp and red cob (RR pattern), indicating that the P1-wr promoter and encoded protein can function in pericarp. Some of the RR patterned transgenic plants produced progeny plants with white pericarp and red cob (WR pattern), and this switch in tissue-specificity correlated with increased transgene methylation. A similar inverse correlation between pericarp pigmentation and DNA methylation was observed for certain natural p1 alleles, which have a gene structure characteristic of standard P1-wr alleles, but which confer red pericarp pigmentation and are consistently less methylated than standard P1-wr alleles. Although we cannot rule out the possible existence of tissue-specific regulatory elements within the p1 non-coding sequences or flanking regions, the data from transgenic and natural alleles suggest that the tissue-specific pigmentation pattern characteristic of the P1-wr phenotype is epigenetically controlled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The R2R3-MYB Transcription Factor Gene Family in Maize

MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, includ...

متن کامل

Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.

Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...

متن کامل

A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.

Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid str...

متن کامل

P1 Epigenetic Regulation in Leaves of High Altitude Maize Landraces: Effect of UV-B Radiation

P1 is a R2R3-MYB transcription factor that regulates the accumulation of a specific group of flavonoids in maize floral tissues, such as flavones and phlobaphenes. P1 is also highly expressed in leaves of maize landraces adapted to high altitudes and higher levels of UV-B radiation. In this work, we analyzed the epigenetic regulation of the P1 gene by UV-B in leaves of different maize landraces...

متن کامل

Functional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis

Background: Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives: The present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2001